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OPTIMAL PURSUIT ON A PLANE IN THE PRESENCE OF AN OBSTACLE* 

L.S. VISHNEVETSKII and A.A. MELIKIAN 

A differential game of simple pursuit is examined in the presenceofaconvexbounded 
obstacle or arbitrary form. Both players are prohibited from being inside the 
obstacle and from intersecting its boundary. The statement of the problem by ex- 
ample of a circular obstacle has been given in the book /l/. A complete solution 
of the encounter game for the circular obstacle case has been constructed by G.K. 
Pozharitskii (**). A different functional, equal to the players' time of motionup 
to capture, is used in the present paper; the obstacle's form is not fixed.Amethod 
based on the necessary optimality conditions /2,3/ is proposed for the construction 
of the singular surfaces and the optimal paths in a position pursuit game /4/; the 
question of the sufficiency of the proposed construction is not examined. Results 
of a numerical study for two forms of the obstacle are presented. 

1. Statement of the problem. In some rectangular coordinate system on a plane let 

the quantities z1.z2 define the coordinates of a point (player) f' and x3,x* define the co- 
ordinates of a point E. Points P and E have simple isotropic motions, i.e., at each instant 
can choose arbitrary directionsof velocities whose magnitudes do not exceed 1 and v, respect- 
ively, where 0 (u (1. We introduce into consideration the four-dimensional vectors cz = (x1, 

. . ., JJ, u = ire,, . . ., u*), x, u E P; the components ui, i = 1,2 are the controls of player P and 

Uj,i = 3, 4 are the controls of player E. Then the players' equations of motion and the 
constraints on their controls are written as 

on the plane let there be fixed a closed convex bounded set A, A CR*, with a piecewise- 
smooth boundary L. The curve & separates the motion plane into two regions, an external one 
(which includes the boundary L itself) and an internal one. 
region A is a segment. 

The latter can be empty only if 
An outward normal n = IE(Q)E R2, Q E L is defined atpoints Qof bound- 

ary L; the function n(Q) is ambiguous if Q is a break point. The players are allowedtomove 
in the external part of the plane and are forbidden to intersect the boundary; motion along 
the boundary itself is admissible as well. In other words, if player P or E finds himself at 
a point Q~L,then his controls ui or ui must satisfy, in addition to (1.11, the constraints 

li,Bl + U&.J >o; U$zl + Up!?% > 0, Q E L (1.2) 

as well. If the interior part A - L of set A is nonempty, then inequalities (1.2) are a con- 
sequence of the phase constraints P,E$ A - L. When A is a segment, A = L, the players can 
in fact be located at any point of the plane; however, at the points of set A they cannot 
choose arbitrary the direction of motion. 

The game starts at instant t _: 0 and is considered ended at the first instant t __ r> (1 
at which the pursuing point Pcoincides with the evading point B, i.e., when the inclusion 

is effected. As the payoff or the functional in the game we take the capture time T which 
player P minimizes and E maximizes. We shall assume that the obstacle does not interferewith 
observation and that both players exactly know at each instant O< t < T the phase vector 
x -: z(f). In correspondence with this we shall later examine a position differential game /4/ 
in which the players' control vector is a function of the phase coordinates: u = u (5). 

~.____... 
*Prikl.Matem.Mekhan .,46,No.4,pp.613-620,1982 
**) The work was reported in the Institute of Applied Mathematics of the Academy of Sciences 
of the U.S.S.R at the seminar on the theory of optimal control of motion (see Izv. Akad. Nauk 
SSSR, Mekh. Tverd. Tela, No.2, 19791. 
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The investigation is restricted to only a part X, not the whole, of the game's Eour- 
dimensional phase space /l/, which corresponds to the disposition of points P fr,. .I;), i: 
(x3. x*) in the case when the obstacle lies between the players, i.e., when the segmentl'i~ has 
points in common with set 4. Thus, in the pursuit game (l-i)- (1.3) we examine the problem 
of constructing the game's value and the players' optimal position strategies /4/ for .rC:<_Y. 
The set of phase space points for which the segment PRdoes not have points in common with 
obstacle f1 is called the region of direct visibility. In this region the solution of the 
game being studied can be constructed geometrically with the aid of the players' reachabilIty 
regions. 

2. Necessary optimality condition. We assume that the required game value I.(L). 
rE X exists, is continuous and is differentiable with respect to all directions in II'. The 
derivative of function V(X) with respect to the direction II (u,,..., u,) is for brevity denoted 
by the symbol of total time derivative 1" == I" (s, II). We can obtain the following necessary 
condition for the game value V(z) /2/: 

minmaxV’(x, u) > - l> max min V’(2, ri) (2.1) 
5 =i “J .l‘, 

The extrema are computed under constraints (1.2) and (1.3). At the points of continuous dif- 
ferentiability we have V’ -= (p.u), p == 17,~ R’, while condition (2.1) turns into the Bellman- 
Isaacs equation 

min mar V’ = mas min 1~' = C'(p) = - 1 (2.2) 

The symbol (p,~) denotes the scalar product of the vectors; the vector subscript in i:, isused 
to denote the vector of partial derivatives with respect to the componentsofthevector-valued 
index. The optimal motions in the smoothness domains of rY(x) are determined by the equations 
of the characteristics /l/ 

x' =z u* = F,, p' --F, 0 (2.3) 

Here u* is the players' optimal control vector. 

3. Primary solution. It is natural to assume that in some part X, of region X,X,C S, 
the players' optimal motion is along a geoclesic line, i.e., the shortest line connecting the 

players and lying in the plane's external part (Fig-l). Allowing for the fact that ilcan be 

a segment, 
we should give a more precise definiton of a geodesic: 
constraints (1.2) must not be violated as the playersmove 
along it. Together with the geodesic we shall examine 
extremal lines (extremals) which supply a local minimum 
of the length of curve PE with dueregardto constraints 
(1.2). Obviously, two extremals Lt and L- exist in re- 
gion X, corresponding to the player P by-passing the 

Fig.1 obstacle clockwise or counterclockwise (Fig.1). The 
geodesic line coincides with the extremai of least length. 

The extremals consist of segments of tangent (support) straight lines to the boundary f, and 
of parts of the boundary itself. We denote the lengths of curves L' and L-by h*(x) and lz-(s). 
It can be shown that at the interior points of region Xthe functions h* are continuously dif- 
ferentiable and satisfy the conditions /5/ 

Equalities (3.1) are the Hamilton- Jacobi equations for certain variational problems 

length of a geodesic. In the problem at hand the length of the geodesic line equals 
while the motion time up to capture is 

S (5) = min IS+ (x), S (x)1, S* = h* i (1 -V) 

(3.11 

Oil the 
min Ih+, L-1, 

(3.2) 

Above we assumed that V(I)= &‘(x),xEX,, where v(a) is the game value. To make region 
X, more precise we take advantage of the necessary conditions (2.1) and (2.2). Onthestrength 

of equalities (3.1) the functions s'(z) and S- (s) satisfy the Bellman-Isaacs Eq.(2.2) at 

the interior points of region X. The function S(s) in'f3.2) satisfies this equation outside 

the points of the hypersurface ~oC R4: 

To zz (5 E X c R’: S+ (T) .= s- (J)) (3.3) 
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When XEro the function S(x) is differentiable with respect to direction, and s' =min is+', 

S--l; therefore, conditions (2.1) must be fulfilled at points XE TO n XI-Computations yield 

max minS'=max min min[S+‘,S-‘I= (3.4) 

=jr_u; c Vn*L;&&)],(1 -V< - 1 

niinrnax S'=min[- 1, n(n+*!7-)1 
uj 

;;q+, 9-) =f I/?" (q$, q&) - vR*(q3*, f34WG - v) 

p (q‘“,clzi) = ($ [1 + jq,+qt- -+ qz+q?-)/(l - viii\? 41 = &TX’ 

A comparison with (2.1) shows that to region X, belongs a part r"of surface fa 

1'" = {s E x: s+ (x) = s- (2), A ((I+, q-) 2 -1) (3.5) 

Surface (3.5) is a dispersal surface /l/; two optimal paths start off from its points, and, 
as follows from (3.4) and from simple geometric considerations, the direction of obstacle by- 

pass is chosen by player P. Motion along the geodesic line leads player P at first onto the 
obstacle's boundary a-,d, after motion along a part of the boundary, emerges into the domain 
of direct visibility. The points of the border B of surface 1" 

n = {.r E x: s+ (2) = s- (r), IZ (n', 47 = -1) (3.6) 

possess the following geometric property. The vector cl+ - q- obviously is a normal to sur- 

face I'". Using relations (3.1), (3.2) and (3.4), we can get that the equalities (q'-q-, 
Fp (9’)) =(q+- q-,F,(q-)) == 0 are fulfilled at the points of set B , signifying, with due re- 

gard to (2,3), that the optimal paths "disperse" from the points of border B with tangencyto 
r". We observe that region X, abuts that part of the boundary of set X at which constraints 

(1.2) are vital; thus, these constraints are taken into account by the construction of the 
primary solution S(x). 

Arguing in terms of reverse time /I/, it can be noted that two optimal paths start off 
from each point of set (3.5). The choice of the path segment entering into the problem's 
solution is made by the test of the equality of pursuit time. However, for paths arrivingon- 
to To from the border B of surface rh such a selection test is inapplicable by virtue of the 
necessary conditions (2.1). A similar situation is typical for the existence of an equivocal 
surface /l/. An attempt to construct a singularity of another type in the given problem is 
untenable. We give a qualitative description of a discontinuity surface of equivocal type, 
based on the results in /1,3/. An equivocal surface /I./ is the surface of discontinuity of 
the partial derivatives of the game's continuous value, and the qualitative behavior of the 
optimal paths in a neighborhood of the surface is the same as for a switching surface. From 
the fact that the switching of the optimal control on the equivocal surface obtains for both 
players simultaneously, it necessarily follows /3/ that singular motions are possible, con- 
sisting in the sliding of the phase vector along the discontinuity surface up togoing ontoits 
border. Such a sliding is realized when one of the players P or E (defined for the problem 
being examined) does not switch his control on reaching the singular surface, i.e., uses his 
"old" control up to the jump. Here the second player is compelled to effect a sliding mode by 
combining his control up to and after the jump. At any instant of sliding along the singular 
surface, the first player (who by the terminology in /3/ controls the singular surface) can 
switch and lead the motion from the singular surface into the primary region. Thus an in- 
finite number of optimal motions issue from the points of the equivocal surface. 

We assume further that the set B of (3.6) is the border 

r+ / (the origin) of two braches r+ and r^ of the equivocal sur- 
face, in correspondence with the qualitative picture shown 
in Fig.2. The part of set X, lying between the surfaces 
Pand r-, is denoted X2. X = S, 7 I’ + X,. f = P + r-. In 

region X, we have V(x) = S(.rt.);the desired objects now are 
the surfaces rf, I'- and the function V(x), SE x’,. Onsurfaces 
r+ and K'- are fulfilled, respectively, the equalities I/ (x) = 

5” (x) and V(x) = S-(x), signify +he continuity of the game 
value V(x). When the discussion touches on both branches 

r+ and r-, we shall omit the indices in i',S and q. 

Fig.2 A procedure for constructing the equivocal surfaceand 
the game value V(z) in region X, was proposed in /3/, Mathe- 
matically it is equivalent to solving a certain Cauchy 

problem with an unknown boundary /6/. Sufficient conditions were obtained in /6/ for the 
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existence and uniqueness in-the-small of the solution of the problem mentioned; in this con- 
nection, on the surface there should be prescribed the Cauchy conditions, a constraint in the 
form of an equality between the vector z and the solution's gradient , and the border of the 
surface itself. The required surface is constructed from the family of singular paths issu- 
ing in reversed time from the border's points /3/. 

4. Equations of the singular characteristics. The partial derivatives of the 
game value V(x) on surface r have been ambiguously determined. The limit value from region 
X, of the value's gradient on l?equals q = s,. For the limit value from the region S, we 
retain the original notation p = IT,. Having assumed that p,2 ~:- p.:? ; 0. (J:~~ I p12 > 11 when i' : T'. 
we obtain: the extrema in (2.2) are reached on a unique control vector u = (IL,. u:) = f:,. 'i‘hen 
from the results in /3/ it follows that in the problem being analyzed only the equlvocai sur- 
face is possible, namely, the one covering the optimal paths arriving from region S,. i.e. , 
these paths are tangent to surface 1'. By virtue of the game value's continuity on I' the 
vector p --c,. z E l?is a normal to r. Then the condition for the tangency, of the optimal 
path going from X,. to the surface I' has the form (F,(p).p -q)= 0 (see (2.3)). This equal- 
ity is precisely the constraint mentioned at the end of Sect.3. Thus, the equalities 

1' (s) =r s (z), (FP (p), p - 9) = 0, F (p) -1. 2 = ii, x F: r (4.1) 

are fulfilled on the unknown surface r. The Bellman-Isaacs equation I'(p)' 1 =- 0 is fulfil- 
led as well in region S,. Equalities (4.1) prove sufficient for obtaining the law of 
variation of vector p along a singular motion, i.e., for deriving the equations of the sing- 
ular characteristics /3,6/, 

Here S,,.and F,,, are the matrices of second partial derivatives. 
Let us compare system (2.3) and (4.2). In the domain of continuous differentiability of 

the game value the vectors p and F, retain, in accord with (2.3), constant values on the 
optimal paths. Consequently, the motion takes place along a straight line both in the game's 
phase space as well as in the physical space, viz., in the plane of the players' motion. Equa- 
tions (4.2) show that the singular paths are, in general, curvilinear. To construct the 
equivocal surface rit is necessary to issue reversed-time solutions of system (4.2) from all 
points of the border Bin (3.6). Here the branch I'+(r-) corresponds to the quantities 5". 
ii'(s-. 'I-) used in the right-hand sides of system (4.2). To integrate system (4.2) we needto 
have as well the initial values p = p(r) = V(z) when s<E f?. 

Let us find at first the mentioned initial value of vector p for branch 1“. When I i-_ 13 
there hold the three equalities 

I'(I) -- S' (2) := 0, s+ (x) -s- fl) = 0. R” (1.) R (q’ (1.). q- (i.)) i- 1 0 (4.3) 

The dimension of manifold n equals two; therefore, the gradients of the left-hand sides of 
equalities (4.3), i-e., the vectors p -- 4',(i'- (J- and H,'. are linearly dependent in if' 
when ZE fi. Hence follow two linear equations relative to component of the unknown vector 1' 

Together with the second and third equalities in (4.1) these equations form a fourth-order 
system relative to vector 11 E R' when XE B. Ey direct substitution we convince ourselves 
that the system mentioned has two solutions: p ~1 (I+ and 

p --' .' (</' -i <I-), 1 E /z (4.4) 

An analogous consideration for the branch I'- also leads to two solutions: p (I- and (4.41. 
The fact that a common solution (4.4) exists for both branches I‘+ and r- signifies that the 
gradient of the value [ (,I) can be continuously proceed from s1 onto the border 1;. The other 
solutions 17 ‘I-‘ and 1' (I- correspond to the problem's primary solution, which was to be 

expected. Thus, the quantity (4.4) is the initial value of the adjoint vector in the constru- 
ction of both branches F+ and r-. When integrating system (4.2) simultaneously with the 
contruction of surface I-there is defined on it the field of vector 0: i.e., the limit from 
region X1 of the value of the game value gradient. 

The vector 13 - cl+ (q- - (i')/?, being the normal to r' when .c ~~7 1'S,.is directed into the 

region Xl+; analogously, the vector ,I - rl- is directed into I\,-. Here X,+ {,I I- .Y, I- (,c) 
iSL+(.r)}. From the results of /3/ it follows that player P controls surface I‘, i.e., when slid- 

ing optimally along the surface he has the initiative in switching onto aby-pass of ti're ob- 
stacle (in approaching the primary region). The optimal motions in region .Y,canbeconstruct- 

ed by integrating system (2.3) in reverse time with the initial conditions r .A 1~ ,!)(I 1. 
.J”Er Another method of construction is, when integrating the system (4.2) of the singular 
characteristics, to set [P 0 by a jump at a certain instant, i.e., to pass to system (2.3). 
If as such an instant of jump we select the initial instant, we obtain a rectilinear path 
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starting off from a point of border N with the initial value of the adjoint vector (4.4). The 
collection of such paths, forming a certain surface I'*. divides the region X, into two sub- 

regions .Y? -= X1+ + r* + X,-. The surface r* touches both the surfaces I'+ and r- at the 

points of border 8. 
Let us describe the optimal mations starting in x2. From the points of region X,+(X,-) 

a rectilinear path goes out withtangencyonto the surface r+(i‘-). At will the player P can 

at once fall into the primary region X,' (X,-) from the point of tangency of the path; to do 
this the pl.ayer P must pass (switch) to pursuit along the geodesic by-passing the obstacle 
(counter-) clockwise. In the opposite case, by Using the control optimal for region X,, play- 
er P achieves a curvilinear motion along the surface T, by which also he cangoatanyinstant 

into the primary region till he reaches the border w. Having reached set B, player P is 

obliged to switch toaby-pass of the obstacle along any of two directions, We note that all 

motions starting in X2 oan Lead player P onto manifold I3; hitting onto Bis inevitable if 

the motion starts from the points of surface r* or if player P. starting to move from the 
region S,' (X2-) wishes, at the final stage, toby-passthe obstacle in the counterclockwise 
(clockwise) direction. 

Let us give a simple geometric interpretation of the tangency condition (Fp, p -- I[) =: 0 

in (4.1). Let 'V (respectively, 41) be the angle between two optimal directions of the velocity 
ui of player P (the velocity ~f! of player i?) on surface r. Using relations (3.1) and (3.21, 

we obtain 

An analogous equality for coszi, is obtained by replacing 
Then (F,. q) = (-cos IP -t v cosq)1(1 - v). The function F (p) from (2.21 
(P,(p), p) = F(~) = _...$, whence we obtain 

coscp -vcos~ = 1 -v, s=r 

the indices 1,2 by 3,4. 
satisfies the condition 

(4.5) 

Equality (4.5) defines the connection between the angles 'p and I$ of the jumps in the direct- 
ions of the velocities of players P and E. 

5. Examples. We consider obstacles of two forms: a circle of unit radius with center 
at the origin and a segment of the ordinate axis with endpoints (0, -1) and (0, i). For the 
circle the primary solution of (3.2) is 

(5.1) 

Formula (5.1) is valid in the region z,<O,s,>O; the passage to the complementary region is 
effected by a simple transformation in (5.1). The definite symmetry in the problem with a 
circuiar obstacle permits us, in general, to restrict ourselves only to the region r,<O,r,>O. 
and, if desired, to pass to a three-dimensional phase space. The surfaceoftwoequalgeodesics 
(3.3)corresponds to the situation when the players are located on an extensionofonediameter 
of the circle, i.e., on a straight line passing through the origin. The equation of this sur- 
face is 

"& - 3& = 0 
(5.2) 

For the case of the segment the formulas analogous to (5.11 and (5.2) are 

s*(2)s(vzi~_t(12Lt:i)~_t)/2.2+ (z,-&1)3)/(1-Y), s+(t)z”S-(+) (5.3) 

The border 8 of (3.6) is prescribed, for both obstacles, by the equalities 

s+ (2) = s- (i), m [z,, 5.J - "rn (ZQ, x4) = t -v (5.4) 

where the function RZ(?&Q) is 

respectively, for the circle and the segment. 
Equations (4.2), for v=li, and for a number of initial points of border 5, was inte- 

grated numerically, using formulas (5.L)-- 15.5). Fig.3 and 4 show typical initials portions 
of the players' paths in the game's physical space. The players start from the points P,*and 
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E,f and, moving with maximum velocities, simultaneously reach the points P and 1: where player 
P chooses one of two pursuit directions along a geodesic. The superscripts on the initial 

points delineate those of the surfaces r+, r-, P* on which the corresponding phase path lie 
in R’. The positions corresponding to the players' location at points P and E indicated in 
Figs.3 and4lie on the border B of (5.4). The initial portions of the paths leading the posi- 
tion into one and the same point of border b' fill the curvilinear triangles Po-PPo+ and fi,-l<E:‘,+; 
these portions are two families tangent to the curves PP,-, PP,+ and ES,-, EE,+. Between the 
segments of these two families there is a one-to-one correspondence: to each initial position 
of player P on the curve P,-P,*P,+ there corresponds a position of player F on the segment 
E,-E,‘Eo+ of the obstacle's boundary, and vice versa. The pair of corresponding points J’, 

and E, and of the tanqent segments starting from them are shown in Fig.3. The players move 
along the tangents up to the points of 
curvilinear singular motion or pass to 

tangency, and next, by choice of player P, perform a 
a motion along a geodesic. 

Fig.4 

The calculations showed that the curvilinear paths arriving at certain positionsofborder 
B differ little from the rectilinear ones, i-e,, for an approximate descriptionof theoptimal 

motions in X we can use only rectilinear paths, not taking into account the motion of player 
P along the obstacle's boundary. Under such an approximate replacement the above-mentioned 
family of tangents, say, for the curvilinear triangle P,PP,+, can be replaced by a bundle of 

segments joining point f' with the points of arc PO-PQ*Pof. A comparison of the analysis carried 
out above shows that the picture of the optimal pursuit for the case of an arbitrary obstacle 
is qualitatively close to the case of the circular obstacle. When passing from a circle to an 
obstacle of another form there is a loss of definite symmetry of the motions alongthe surfaces 
F+and I'-. If to the motion along 1': in the case of the circle there corresponds the motion of 
the players along an extension of the circle's diameter (just as if there was no obstacle), 
then in the case of an obstacle of another form the rectilinear path segments of players 1' and 
ti lie, in general, on different straight lines (Fig.4). 

we remark that the method proposed in the present paper can be generalized for pursuit 

Droblems with an obstacle in space H", ,z)x. if instead of (3.2) we succeed in findingaprimary 

solution of the form 

where Q is some set of values of parameter Q In the planar case the set Q consists of two 

elements. 

1. 

2. 

3. 
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